Astronomia | Terra | Sole | Luna | Pianeti | Sistema Solare-1 | Sistema Solare-2 | Sistema Solare-3 | Sistema Solare-4 |
I Pianeti
Un pianeta è un corpo celeste che orbita attorno ad una stella, ma che, a differenza di questa, non produce energia tramite fusione nucleare, e la cui massa è sufficiente a conferirgli una forma sferoidale, laddove la propria dominanza gravitazionale gli permette di mantenere libera la sua fascia orbitale da altri corpi di dimensioni comparabili o superiori.
Tale definizione è entrata ufficialmente nella nomenclatura astronomica il 24 agosto 2006, con la sua promulgazione ufficiale da parte dell'Unione Astronomica Internazionale. In precedenza non esisteva una definizione precisa, ma un'atavica indicazione (derivante dall'antica astronomia greca) per cui si considerava pianeta qualunque corpo celeste, dotato di massa significativa, che si muovesse su orbite fisse.
Nell'antichità, come rivela l'etimologia del termine pianeta (greco antico πλάνητες ἀστέρες (plànētes astéres) stelle vagabonde, venivano considerati tali tutti gli astri che si spostavano nel cielo notturno rispetto allo sfondo delle stelle fisse, ovvero la Luna, il Sole, Mercurio, Venere, Marte, Giove e Saturno, escluse le comete, che venivano considerate fenomeni atmosferici. NelXVI secolo, con l'affermarsi del sistema eliocentrico,
divenne chiaro che Luna e Sole non condividevano in realtà la natura fisica e le caratteristiche orbitali proprie degli altri pianeti, e che anche la Terra doveva essere inclusa nel novero dei pianeti. Nel 1781 venne scoperto il primo pianeta che non era noto agli astronomi greci: si trattava di Urano. Nei successivi 150 anni sarebbero stati individuati, in successione, altri due pianeti, Nettuno e Plutone; quest'ultimo è stato annoverato tra i pianeti dalla scoperta, nel 1930, al 2006, anno in cui venne promulgata la nuova definizione di pianeta.
A partire dal 1801, inoltre, vennero progressivamente scoperti oltre centomila corpi di dimensioni subplanetarie, orbitanti attorno al Sole principalmente nella regione di spazio compresa fra l'orbita marziana e quella gioviana (la cosiddetta fascia principale); sebbene in un primo tempo designati come pianeti, questi corpi, in virtù del loro numero sempre crescente, vennero presto definiti come una classe di oggetti a sé, gli asteroidi. Fra di essi, solo poche decine sono caratterizzati da una forma approssimativamente sferica.
La promulgazione della nuova definizione
Lo schema dei nove pianeti classici rimase inalterato fino agli anni novanta del XX secolo; alla fine del 2002, tuttavia, le moderne tecniche osservative avevano già permesso l'individuazione di oltre cento corpi di questo tipo, fra pianeti extrasolari e ghiacciati orbitanti nelle regioni periferiche del sistema solare esterno.
Nel caso di questi ultimi, in particolare, la scoperta di corpi dalle dimensioni confrontabili o addirittura superiori a quelle di Plutone (il più piccolo dei nove pianeti) riaccese un forte dibattito sulla
necessità di promulgare una definizione precisa di pianeta. Il problema nasceva dal fatto che la classificazione dei corpi celesti derivava in parte dall'astronomia dell'antica Grecia, che si limitava a chiarire che un pianeta era un qualsiasi corpo celeste che si muovesse lungo orbite ("schemi") fisse. Questa descrizione era stata limata col tempo fino a quella corrente, che tuttavia peccava in vaghezza e in genericità.
Nel 2005 l'Unione Astronomica Internazionale (UAI) istituì pertanto il Comitato per la definizione di pianeta (PDC), composto da sette esperti riconosciuti a livello mondiale, cui assegnò il compito di fornire una definizione precisa del termine. Nel corso della ventiseiesima Assemblea Generale dell'UAI (14-25 agosto 2006) la risoluzione proposta dal comitato fu discussa e modificata, ed il 24 agosto 2006 ufficializzata.
Da tale data Plutone, precedentemente considerato un pianeta, fu ridefinito, assieme ad altri corpi di recente scoperta, come pianeta nano.
Mitologia
I nomi dei pianeti nella cultura occidentale sono derivati dalle consuetudini dei Romani, che in ultima analisi derivano da quelle dei Greci e dei Babilonesi.
Nell'antica Grecia, il Sole e la Luna erano chiamati Ἥλιος (Elio) e Σελήνη (Selene). Il pianeta più lontano era chiamato Φαίνων (Phàinōn), il "più luminoso"; il penultimo pianeta era Φαέθων (Phaéthon), il "brillante"; il pianeta rosso era indicato come Πυρόεις, l'"ardente"; il più luminoso era conosciuto come Φωσφόρος Phōsphóros, il "portatore di luce", mentre il fugace pianeta più interno era chiamato Στίλβων (Stílbōn), "lo splendido".
Inoltre, i Greci associarono ogni pianeta ad una divinità del loro pantheon, gli Olimpi: Helios e Selene erano i nomi sia dei pianeti, sia degli dèi; Phainon era sacro a Crono, il Titano che generò gli Olimpi; Phaethon era sacro a Zeus, figlio di Crono; Pyroeis ad Ares, figlio di Zeus e dio della guerra; Phosphoros era retto da Afrodite, la dea dell'amore; mentre Hermes, messaggero degli dei e dio dell'apprendimento e dell'ingegno, dominava Stilbon.
L'abitudine greca di dare i nomi dei propri dèi ai pianeti derivò quasi certamente da quella dei Babilonesi, che indicavano Phosphoros con il nome della propria dea dell'amore, Ishtar; Pyroeis era identificato dal dio della guerra, Nergal; Stilbon dal dio della saggezza, Nabu, e Phaethon dal capo degli dei, Marduk. Le concordanze tra i due sistemi di nomenclatura sono troppe, perché essi possano essere stati sviluppati in modo indipendente. La corrispondenza tra le divinità, ad ogni modo, non era perfetta. Per esempio, Nergal fu identificato con Ares; tuttavia, Nergal era per i Babilonesi, oltre che il dio della guerra, anche la divinità delle pestilenze e dell'oltretomba.
Oggi, i nomi utilizzati per designare i pianeti nella maggior parte delle culture occidentali derivano da quelli delle divinità olimpiche, spesso in una versione mutuata dalla mitologia romana. Infatti, l'influenza dell'Impero romano prima e della Chiesa cattolica poi ha portato all'adozione dei nomi in latino. Inoltre, il pantheon romano, in conseguenza della comune origine indoeuropea, aveva numerose similitudini con quello greco, sebbene mancasse di una ricca tradizione narrativa. Durante l'ultimo periodo della Repubblica romana, gli scrittori romani attinsero ai miti greci e li estesero alle proprie
divinità, al punto che i due pantheon divennero quasi indistinguibili.In seguito, quando i Romani studiarono i testi di astronomia dei Greci, assegnarono ai pianeti i nomi delle proprie divinità: Mercurio (per Hermes), (per Afrodite), Marte (per Ares), Giove (per Zeus) e Saturno (per Crono).
Quando nei secoli XVIII e XIX furono scoperti nuovi pianeti, la comunità internazionale scelse di proseguire nella tradizione e furono nominati Urano e Nettuno.
Secondo una credenza originatasi in Mesopotamia, ma sviluppatasi nell'Egitto ellenistico ed in seguito diffusasi anche tra i Romani, le sette divinità da cui i pianeti erano nominati si prendevano cura degli affari della Terra con turni orari, stabiliti in base alla distanza dal nostro pianeta nell'ordine seguente: Saturno, Giove, Marte, il Sole, Venere, Mercurio e la Luna.
Il giorno era poi intitolato al dio che ne reggeva la prima ora, così al giorno dedicato a Saturno (che reggeva la prima ora del primo giorno e della settimana) seguiva quello dedicato al Sole (che reggeva la venticinquesima ora della settimana e la prima del secondo giorno), a cui seguivano i giorni dedicati alla Luna, a Marte, Mercurio, Giove e Venere. Quest'ordine è stato quindi ripreso dall'ordine dei giorni della settimana nel calendario romano che sostituì il ciclo nundinale e che ancora oggi è preservato in numerose lingue e culture.
Nella maggior parte delle lingue romanze, i nomi dei prime cinque giorni della settimana sono traduzione diretta delle originarie espressioni latine: ad esempio da lunae dies derivano lunedì, in italiano; lundi in francese, lunes in spagnolo. Differentemente è accaduto per il sabato e la domenica, i cui nomi hanno subito l'influsso della tradizione della Chiesa. Nelle lingue germaniche, invece, nei nomi di questi due giorni è stato preservato il loro significato originario. A titolo di esempio, le parole inglesi Sunday e Saturday tradotte letteralmente significano: "giorno del Sole" e "giorno di Saturno"; analogamente è accaduto per il lunedì. I nomi dei restanti
giorni della settimana, invece, sono stati riassegnati a dèi considerati simili o equivalenti alle corrispondenti divinità romane.
Poiché la Terra fu classificata tra i pianeti solo nel XVII secolo, ad essa non è generalmente associato il nome di una divinità. Nelle lingue romanze il suo nome deriva dalla parola latina "terra"; mentre nelle lingue germaniche dalla parola *erþā, da cui derivano le forme Earth in inglese, Erda e, la più recente, Erde in tedesco, Aarde in olandese e Jorden (forma determinata di jord) nelle Lingue scandinave; tutte col significato di "suolo".
In greco si è preservato il nome originario: Γῆ Ghê (Gea o Gaia).
In accordo con il Modello standard della formazione stellare, la nascita di una stella avviene attraverso il collasso di una nube molecolare, il cui prodotto è la protostella. Non appena la stella nascente conclude la fase protostellare e fa ingresso nella pre-sequenza principale (fase di T Tauri), il disco che ne ha mediato l'accrescimento diviene protoplanetario; la sua temperatura diminuisce, permettendo la formazione di piccoli grani di polvere costituiti da roccia (in prevalenza silicati) e ghiacci di varia natura, che a loro volta possono fondersi tra loro per dar luogo a blocchi di diversi chilometri detti planetesimi. Se la massa residua del disco è sufficientemente grande, in un lasso di tempo astronomicamente breve (100 000–300 000 anni) i planetesimi possono fondersi tra loro per dar luogo a embrioni planetari, detti protopianeti, i quali, in un arco temporale compreso tra 100 milioni e un miliardo di anni, vanno incontro ad una fase di violente collisioni e fusioni con altri corpi simili; il risultato sarà la formazione, alla fine del processo, di alcuni pianeti terrestri.
La formazione dei giganti gassosi è invece un processo più complicato, che avverrebbe al di là della cosiddetta frost line (chiamata in letteratura anche limite della neve.
I protopianeti ghiacciati posti oltre questo limite possiedono una massa superiore e sono in maggior numero rispetto ai protopianeti esclusivamente rocciosi. Non è completamente chiaro cosa succeda in seguito alla formazione dei protopianeti ghiacciati; sembra tuttavia che alcuni di questi, in forza delle collisioni, crescano fino a raggiungere una massa superiore alle 10 masse terrestri (secondo recenti simulazioni si stima 14-18 necessaria per poter innescare un fenomeno di accrescimento, simile a quello cui è andata incontro la stella ma su scala ridotta, a partire dall'idrogeno e dall'elio che sono stati spinti nelle regioni esterne del disco dalla pressione di radiazione e dal vento della stella neonata. L'accumulo di gas da parte del nucleo protopianetario è un processo inizialmente lento, che prosegue per alcuni milioni di anni fino al raggiungimento di circa 30 M⊕, dopo di che subisce un'imponente accelerazione che lo porta in breve tempo (poche migliaia di anni) ad accumulare il 90% di quella che sarà la sua massa definitiva: si stima che pianeti come Giove e Saturno abbiano accumulato la gran parte della loro massa in appena 10 000 anni.
L'accrescimento si conclude all'esaurimento dei gas disponibili; successivamente il pianeta subisce, a causa della perdita di momento angolare dovuta all'attrito con i residui del disco, un decadimento dell'orbita che risulta in un processo di migrazione planetaria, più o meno accentuato a seconda dell'entità dell'attrito; questo spiega come mai in alcuni sistemi extrasolari siano stati individuati dei giganti gassosi a brevissima distanza dalla stella madre, i cosiddetti pianeti gioviani caldi (Hot Jupiters). Si ritiene che i giganti ghiacciati, come Urano e Nettuno, costituiscano dei "nuclei falliti", formatisi quando oramai gran parte dei gas erano stati esauriti.
I protopianeti che non sono stati inglobati dai pianeti son potuti diventare loro satelliti, in seguito ad un processo di cattura gravitazionale, o hanno mantenuto un'orbita eliosincrona raggruppati in fasce con altri oggetti simili, diventando pianeti nani o altri corpi minori. Gli impatti con i planetesimi, così come il decadimento radioattivo dei loro costituenti, hanno riscaldato i pianeti in formazione, causandone una parziale fusione. Ciò ha permesso che il loro interno si sia differenziato conducendo alla formazione di un nucleo più denso, di un mantello e di una crosta
Nel processo, i pianeti terrestri, più piccoli, hanno perduto la maggior parte della loro atmosfera; i gas perduti sono stati in parte reintegrati da quelli eruttati dal mantello e dagli impatti di corpi cometari. I pianeti più piccoli in seguito hanno continuato a perdere la propria atmosfera attraverso vari meccanismi di fuga. È importante notare che esistono dei sistemi planetari estremamente diversi dal sistema solare: sono stati scoperti, ad esempio, sistemi planetari intorno a pulsar; in merito a questi ultimi non vi sono ancora teorie certe sulla loro formazione, ma si pensa che possano originarsi a partire da un disco circumstellare costituitosi dai materiali espulsi dalla stella morente durante l'esplosione in supernova.
Gli otto pianeti del sistema solare.
Si è scoperto inoltre che la metallicità, ovvero l'abbondanza di elementi più pesanti dell'elio, è un parametro importante nel determinare se una stella possegga o meno pianeti: si ritiene che sia meno probabile che una stella povera di metalli, appartenente alla popolazione stellare II, possa essere circondata da un sistema planetario articolato, mentre le probabilità aumentano per le stelle ricche di metalli, appartenenti alla popolazione stellare I.
Pianeti del sistema solare
Gli otto pianeti che, in base alla definizione ufficiale del 24 agosto 2006, compongono il sistema solare, in ordine di distanza crescente dal Sole, sono:
- Mercurio (☿), senza satelliti naturali conosciuti.
- Venere (♀), senza satelliti naturali conosciuti.
- Terra (⊕), con un satellite naturale: Luna.
- Marte (♂), con due satelliti naturali: Phobos e Deimos.
- Giove (♃), con sessantasette satelliti naturali confermati.
- Saturno (♄), sessanta satelliti naturali confermati.
- Urano (♅), con ventisette satelliti naturali confermati.
- Nettuno (♆), con tredici satelliti naturali confermati.
Dal 1930 al 2006 era considerato pianeta anche Plutone (♇), che possiede cinque satelliti naturali: Caronte, Notte, Idra, Cerbero; il quinto satellite, Stige, è stato scoperto dal telescopio spaziale Hubble l'11 luglio 2012. Nel 2006 Plutone è stato riclassificato come pianeta nano.
Tutti i pianeti del sistema solare (eccetto la Terra) possiedono nomi derivati dalla mitologia romana; al contrario, i nomi dei principali satelliti naturali sono derivati da quelli di divinità o personaggi della mitologia greca (ad eccezione di quelli di Urano, che portano nomi di personaggi delle opere di Shakespeare e Alexander Pope).
Gli asteroidi, al contrario, possono essere battezzati, a discrezione del loro scopritore e con l'approvazione dell'UAI, con un nome qualunque.
Non sono ancora chiare le convenzioni di nomenclatura che verranno adottate per la categoria dei pianeti nani.
I pianeti del sistema solare, secondo la loro composizione, possono essere divisi in pianeti terrestri e giganti gassosi
Pianeti terrestri
Mercurio |
Venere |
Terra |
Marte |
Nel sistema solare essi sono quattro:
I pianeti di tipo terrestre si trovano nel sistema solare interno e sono costituiti principalmente da roccia (da cui il nome alternativo di pianeti rocciosi). Il termine deriva direttamente dal nome del nostro pianeta, per indicare quei pianeti simili alla Terra. Essi sono caratterizzati da una temperatura superficiale relativamente alta, dovuta alla vicinanza del Sole, assenza o basso numero di satelliti naturali, con un'atmosfera molto sottile se confrontata a quella dei giganti gassosi. Raggiungono dimensioni relativamente piccole (meno di 15 000 chilometri di diametro).
Pianeti giganti gassosi
Giove |
Saturno |
Urano |
Nettuno |
I pianeti di tipo gioviano sono composti principalmente da gas, donde il nome di giganti gassosi. Prototipo di tali pianeti è Giove. Essi sono caratterizzati da un elevato valore della massa, che consente loro di trattenere un'estesa atmosfera ricca di idrogeno ed elio, e da dimensioni notevoli. Sono accompagnati da un elevato numero di satelliti naturali e da elaborati sistemi di anelli.
Nel sistema solare sono presenti quattro giganti gassosi:
La struttura interna dei pianeti gioviani.
- Giove
- Saturno
- Urano
- Nettuno
Pianeti nani
I pianeti nani sono oggetti celesti orbitanti attorno ad una stella e caratterizzati da una massa sufficiente a conferire loro una forma sferoidale (avendo raggiunto la condizione di equilibrio idrostatico), ma che non sono stati in grado di "ripulire" la propria fascia orbitale da altri oggetti di dimensioni confrontabili; da ciò deriva il fatto che i pianeti nani si trovano all'interno di cinture asteroidali.
Nonostante il nome, un pianeta nano non è necessariamente più piccolo di un pianeta. Si osservi inoltre che la classe dei pianeti è distinta da quella dei pianeti nani, e non comprende quest'ultima. Inoltre, i pianeti nani posti oltre l'orbita di Nettuno sono detti plutoidi.
L'UAI riconosce cinque pianeti nani:
Cerere |
Plutone e tre dei suoi cinque satelliti: Caronte, Notte e Idra |
Haumea visto con i satelliti Hi'iaka e Namaka |
Makemake |
Eris e la sua luna Disnomia |
Pianetini
Immagine dell'asteroide 243 Ida e della sua luna Dactyl ripresi dalla sonda Galileo.
Il termine "pianetino" e la locuzione "pianeta minore" sono solitamente utilizzate per designare gli asteroidi. Ciò deriva dal fatto che i primi quattro asteroidi scoperti (Cerere oggi classificato come pianeta nano,Pallade, Giunone e Vesta), furono in effetti considerati dei pianeti veri e propri per circa quarant'anni. Il primo a suggerire di distinguerli dai pianeti fu William Herschel, che propose il termine "asteroide", ovvero "di aspetto stellare", riferendosi al fatto che sono oggetti troppo piccoli perché possa essere risolto il loro disco e, di conseguenza, osservati con un telescopio appaiono come le stelle.
La maggior parte degli astronomi, comunque, preferì continuare ad utilizzare il termine pianeta almeno fino alla seconda metà dell'Ottocento, quando il numero degli asteroidi conosciuti superò le cento unità. Allora, diversi osservatori in Europa e negli Stati Uniti iniziarono a riferirsi loro collettivamente come a "pianeti minori", espressione ancora in uso.
Caratteristiche
Ogni pianeta, pur nella propria unicità, condivide con gli altri delle caratteristiche comuni; alcune di queste, come la presenza di anelli o satelliti naturali, sono state osservate solo nel sistema solare; altre invece, quali l'atmosfera, sono comuni anche ai pianeti extrasolari.
Parametri caratteristici di un'orbita ellittica.
Tutti i pianeti, ad eccezione dei pianeti interstellari, orbitano attorno a stelle o comunque oggetti sub-stellari. L'orbita percorsa da un pianeta attorno alla propria stella è descritta dalle leggi di Keplero: i pianeti orbitano su orbite ellittiche, di cui la stella occupa uno dei fuochi. Nel sistema solare tutti i pianeti orbitano intorno al Sole nella stessa direzione di rotazione del Sole (quindi in senso anti-orario, se visto dal polo nord della nostra stella). Si è visto tuttavia che almeno un pianeta extrasolare, WASP-17b, si muove in direzione opposta a quella in cui ruota la stella. Il periodo che un pianeta impiega per compiere una rivoluzione completa intorno alla stella è conosciuto come periodo siderale o anno. La massima distanza tra il pianeta ed il centro dell'orbita è detta semiasse maggiore.
L'anno di un pianeta dipende dal valore del semiasse maggiore dell'orbita che esso percorre: più è grande, maggiore è la distanza che deve percorrere il pianeta lungo la propria orbita e con minor velocità, perché meno attratto dalla gravità della stella. La distanza tra il pianeta e la stella varia nel corso del periodo siderale. Il punto in cui il pianeta è più vicino alla stella viene chiamato periastro (perielio nel sistema solare), mentre il punto più lontano è chiamato afastro o apoastro (afelio nel sistema solare).
Al periastro la velocità del pianeta è massima, convertendo l'energia gravitazionale in energia cinetica; all'apoastro, invece, la velocità assume il suo valore minimo.
L'orbita di Nettuno comparata a quella di Plutone. Notare l'elongazione dell'orbita di Plutone in relazione con l'eccentricità di Nettuno, come anche il suo largo angolo sull'eclittica (Inclinazione orbitale).
L'orbita di ogni pianeta è descritta attraverso sei parametri orbitali: il semiasse maggiore; eccentricità, l'inclinazione orbitale, l'ascensione retta del nodo ascendente, l'argomento del perielio o pericentro e l'anomalia vera.
L'eccentricità descrive la forma dell'orbita: le orbite caratterizzate da una piccola eccentricità sono più circolari, mentre quelle con eccentricità maggiori sono più ellittiche. I pianeti del sistema solare percorrono orbite con basse eccentricità e pertanto quasi circolari. Le comete e gli oggetti della fascia di Kuiper (così come alcuni pianeti extrasolari) hanno invece orbite molto eccentriche e quindi particolarmente allungate. L'inclinazione e l'ascensione retta del nodo ascendente sono due parametri angolari che individuano la disposizione del piano orbitale nello spazio. L'inclinazione è misurata rispetto al piano dell'orbita della Terra (piano dell'eclittica) per i pianeti del sistema solare, mentre per i pianeti extrasolari si usa il piano di vista dell'osservatore da terra.
Gli otto pianeti del sistema solare giacciono molto vicini al piano dell'eclittica; le comete e gli oggetti della fascia di Kuiper invece possono discostarsene grandemente. I punti in cui il pianeta attraversa il piano dell'eclittica sono detti nodi, ascendente o discendente in base alla direzione del moto. L'ascensione retta del nodo ascendente è misurata rispetto ad una direzione di riferimento, individuata nel sistema solare dal punto d'Ariete. L'argomento del pericentro specifica l'orientazione dell'orbita all'interno del piano orbitale, mentre l'anomalia vera la posizione dell'oggetto sull'orbita in funzione del tempo.
A questi parametri possono essere affiancati o sostituiti degli altri che sono una loro rielaborazione, come il tempo di passaggio al perielio, equivalente nella meccanica kepleriana all'indicazione dell'argomento del pericentro, o il periodo orbitale, equivalente all'asse maggiore per la terza legge di Keplero.
Diversi pianeti e pianeti nani del sistema solare (come Nettuno e Plutone), così come alcuni pianeti extrasolari, hanno periodi orbitali che sono in risonanza l'un con l'altro o con corpi più piccoli (fenomeno comune anche nei sistemi dei satelliti).
Rotazione
I pianeti ruotano attorno ad assi invisibili che passano per il loro centro. Il periodo di rotazione di un pianeta è conosciuto come il suo giorno. La maggior parte dei pianeti del sistema solare ruotano nello stesso verso in cui orbitano attorno al Sole, ovvero in verso antiorario se guardati dal polo nord celeste; le uniche eccezioni sono Venere ed Urano, che ruotano in verso orario (sebbene a causa dell'estrema inclinazione dell'asse di Urano esistono due convenzioni che si differenziano nel polo che scelgono come nord e, di conseguenza, nel indicare come oraria o antioraria la rotazione attorno a tale polo, la rotazione di Urano è retrograda rispetto alla sua orbita, indipendentemente dalla convenzione adottata.) Grande è la variabilità della durata del giorno tra i pianeti, con Venere che completa una rotazione in 243 giorni terrestri ed i giganti gassosi che la completano in poche ore.
Non sono noti i periodi di rotazione dei pianeti extrasolari finora scoperti. Tuttavia, per quanto riguarda i pianeti gioviani caldi, la loro prossimità alle stelle attorno alle quali orbitano, suggerisce che siano in rotazione sincrona (ovvero, il loro periodo di rotazione è uguale al periodo di rivoluzione); di conseguenza, essi mostrano sempre la stessa faccia alla stella intorno a cui orbitano e mentre su un emisfero è perpetuamente giorno, sull'altro è perpetuamente notte.
Inclinazione assiale
L'inclinazione dell'asse terrestre è di circa 23°.
L'asse intorno a cui ruota il pianeta può essere - ed in genere è - inclinato rispetto al piano orbitale. Ciò determina che vari nel corso dell'anno il quantitativo di luce che ogni emisfero riceve dalla stella: quando l'emisfero settentrionale è diretto verso di essa e riceve maggiore illuminazione, quello meridionale si trova nella condizione opposta, e viceversa. È l'inclinazione dell'asse di rotazione quindi a comportare l'esistenza delle stagioni ed i cambiamenti climatici annuali ad esse associate.
I momenti in cui la stella illumina la superficie massima o minima di un emisfero sono detti solstizi. Ve ne sono due nel corso dell'orbita (dunque due all'anno) e ad essi corrisponde la durata massima (solstizio d'estate) e minima (solstizio d'inverno) del giorno. I punti dell'orbita in cui il piano equatoriale e il piano orbitale del pianeta vengono a giacere sullo stesso piano sono detti equinozi. Agli equinozi la durata del giorno eguaglia la durata della notte (e la superficie illuminata si divide equamente tra i due emisferi geografici).
Tra i pianeti del sistema solare, la Terra, Marte, Saturno e Nettuno possiedono valori dell'inclinazione dell'asse di rotazione prossimi ai 25°. Mercurio, Venere e Giove ruotano attorno ad assi inclinati di pochi gradi rispetto ai rispettivi piani orbitali e le variazioni stagionali sono minime. Urano, invece, possiede l'inclinazione assiale maggiore, pari a circa 98°, e ruota praticamente su un fianco. I suoi emisferi in prossimità dei solstizi sono quasi perennemente illuminati o perennemente in ombra.
La durata delle stagioni è determinata dalla dimensione dell'orbita: su Venere durano circa 55-58 giorni, sulla Terra 90-93 giorni, su Marte sei mesi, su Nettuno quarant'anni. Le inclinazioni assiali dei pianeti extrasolari non sono state determinate con certezza. Gli studiosi ritengono che la maggior parte dei pianeti gioviani caldi possegga inclinazioni assiali nulle o quasi, in conseguenza della prossimità alla loro stella.
Dominanza orbitale
La caratteristica dinamica che definisce un pianeta è la dominanza orbitale. Un pianeta è gravitazionalmente dominante, o avrà ripulito le proprie vicinanze orbitali (riportando le parole utilizzate nella definizione di pianeta approvata dall'Unione Astronomica Internazionale) se nella propria zona orbitale non orbiteranno altri corpi di dimensioni comparabili a quelle del pianeta che non siano o suoi satelliti o comunque ad esso gravitazionalmente legati. Questa caratteristica è la discriminante tra pianeti e pianeti nani. Sebbene questo criterio ad oggi sia applicato soltanto al sistema solare, sono stati scoperti diversi sistemi planetari extrasolari in formazione in cui si osserva in atto il processo che condurrà alla formazione di pianeti gravitazionalmente dominanti.
Caratteristiche fisiche
Massa
La principale caratteristica fisica che consente di identificare un pianeta è la sua massa. Un pianeta deve possedere una massa sufficientemente elevata affinché la propria gravità domini sulle forze elettromagnetiche, presentandosi in uno stato di equilibrio idrostatico; più semplicemente, ciò significa che tutti i pianeti possiedono una forma sferica o sferoidale. Infatti, un corpo celeste può assumere una forma irregolare se possiede una massa inferiore ad un valore limite, che è funzione della propria composizione chimica; superato tale valore, però, si innesca un processo di collasso gravitazionale che lo conduce, con tempi più o meno lunghi, ad assumere una forma sferica. La massa è anche il principale attributo che consente di distinguere un pianeta da una nana bruna. Il limite superiore per la massa di un corpo planetario equivale a circa 13 volte la massa di Giove, valore oltre il quale nel nucleo del corpo celeste si raggiungono le condizioni adatte per la fusione del deuterio, il che rende l'oggetto una nana bruna. A parte il Sole, nel sistema solare non esiste alcun altro oggetto con una massa superiore a tale valore; tuttavia sono stati scoperti numerosi oggetti extra-solari con masse che si avvicinano a tale valore limite e che possono essere definiti pertanto pianeti.
Il più piccolo pianeta conosciuto, escludendo pianeti nani e satelliti, è PSR B1257+12A, uno dei primi pianeti extrasolari scoperti, individuato nel 1992 in orbita intorno ad una pulsar; la sua massa è circa la metà di quella del pianeta Mercurio.
Differenziazione interna
Illustrazione della struttura interna di Giove, suddivisa in un nucleo roccioso sovrastato da uno strato profondo di idrogeno metallico.
Ogni pianeta ha iniziato la propria esistenza in uno stato fluido; nelle fasi iniziali della sua formazione, i materiali più densi e più pesanti sono affondati verso il centro del corpo, lasciando i materiali più leggeri in prossimità della superficie. Ogni pianeta ha quindi un interno differenziato, costituito da un nucleo denso circondato da un mantello, che può presentarsi allo stato fluido.
I pianeti terrestri sono sigillati all'interno di una crosta dura, mentre nei giganti gassosi il mantello si dissolve semplicemente negli strati nuvolosi superiori. I pianeti terrestri posseggono nuclei di elementi ferromagnetici, quali ferro e nichel, e mantelli di silicati. Si ritiene che Giove e Saturno posseggano nuclei composti da rocce e metalli, circondati da idrogeno metallico. Urano e Nettuno, più piccoli, posseggono nuclei rocciosi, circondati da mantelli composti da ghiacci d'acqua, ammoniaca, metano e di altre sostanze volatili. I moti dei fluidi in prossimità dei nuclei planetari determina l'esistenza di un campo magnetico.
Atmosfera
L'atmosfera terrestre.
Tutti i pianeti del sistema solare hanno un'atmosfera, dal momento che la gravità associata alle loro grandi masse è abbastanza forte da intrappolare le particelle gassose. I giganti gassosi sono sufficientemente massicci da trattenere grandi quantitativi di gas leggeri come idrogeno ed elio, mentre i pianeti più piccoli li perdono nello spazio. L'atmosfera terrestre è diversa rispetto a quelle degli altri pianeti. I processi vitali che hanno luogo sul pianeta, infatti, ne hanno alterato la composizione, arricchendola di ossigeno molecolare (O2). Mercurio è l'unico pianeta del sistema solare che possiede un'atmosfera estremamente tenue, che è stata soffiata via per la maggior parte, sebbene non totalmente, dal vento solare. Le atmosfere planetarie ricevono energia in vario grado dal Sole e dagli strati planetari più interni; ciò determina il verificarsi di fenomeni meteorologici, quali cicloni sulla Terra, tempeste di sabbia che interessano l'intero Marte, tempeste cicloniche e anticicloniche (come, ad esempio, la celebre Grande Macchia Rossa su Giove) e forti venti sui giganti gassosi. Anche sui pianeti extrasolari sono state identificate tracce di attività meteorologica: su HD 189733 b è stata individuata una tempesta simile alla Grande Macchia Rossa, ma due volte più ampia. Si è visto che alcuni pianeti gioviani caldi perdono la loro atmosfera nello spazio a causa delle radiazioni e del vento stellare in modo molto simile a quanto accade alle code delle comete: è quanto accade ad esempio per HD 209458 b. È stato ipotizzato che su questi pianeti si verifichi una grande escursione termica diurna e che possono pertanto svilupparsi venti supersonici tra l'emisfero illuminato e quello in ombra, con velocità che nel caso di HD 209458 b sono comprese tra 5000 e 10.000 km/h. Osservazioni eseguite su HD 189733 b sembrano tuttavia indicare che l'emisfero buio e l'emisfero illuminato abbiano temperature molto simili, ad indicazione del fatto che l'atmosfera del pianeta ridistribuisce globalmente e con elevata efficienza l'energia ricevuta dalla stella.
Magnetosfera
Interazione tra la magnetosfera terrestre e il campo magnetico interplanetario.
Una caratteristica importante dei pianeti è l'esistenza di un momento magnetico intrinseco, che indica che il pianeta è ancora geologicamente attivo o, in altre parole, che al suo interno esistono ancora moti convettivi di materiali elettricamente conduttivi (che generano il campo). La presenza di un campo magnetico planetario modifica significativamente l'interazione tra il pianeta ed il vento stellare; infatti attorno al pianeta si crea una "cavità" (una zona dello spazio in cui il vento solare non riesce ad entrare) chiamata Magnetosfera, che può raggiungere dimensioni molto più grandi rispetto al pianeta stesso. Al contrario, pianeti che non posseggono un campo magnetico intrinseco sono circondati da piccole magnetosfere indotte dall'interazione della ionosfera con il vento solare, che non sono in grado di proteggere efficacemente il pianeta. Degli otto pianeti del sistema solare, solo Venere e Marte mancano di un campo magnetico intrinseco, mentre ne possiede uno la più grande Sluna di Giove, Ganimede. Il campo magnetico intrinseco di Ganimede è diverse volte più forte di quello di Mercurio, il più debole tra quelli posseduti dai pianeti e appena sufficiente a deflettere il vento solare. Il campo magnetico planetario più forte all'interno del sistema solare è quello di Giove. Le intensità dei campi magnetici degli altri giganti gassosi sono pressappoco simili a quella del campo terrestre, sebbene i loro momenti magnetici siano significativamente più grandi. I campi magnetici di Urano e Nettuno sono fortemente inclinati rispetto ai rispettivi assi di rotazione e scostati rispetto al centro del pianeta. Nel 2004 un gruppo di astronomi delle Hawaii ha osservato un pianeta extrasolare creare una macchia sulla superficie della stella attorno a cui era in orbita, HD 179949. I ricercatori hanno ipotizzato che la magnetosfera del pianeta stesse interagendo con la magnetosfera stellare, trasferendo energia alla fotosfera stellare ed incrementando localmente la già alta temperatura di 14.000 K di ulteriori 750 K.
Caratteristiche secondarie
Urano e i suoi anelli.
Tutti i pianeti ad esclusione di Mercurio e Venere hanno satelliti naturali, chiamati comunemente "lune". La Terra ne ha una, Marte due, mentre i giganti gassosi ne hanno un elevato numero, organizzate in sistemi complessi simili a sistemi planetari. Alcune lune dei giganti gassosi hanno caratteristiche simile a quelle dei pianeti terrestri e dei pianeti nani ed alcune di esse sono state studiate come possibili dimore di forme di vita (specialmente Europa, uno dei satelliti di Giove). Attorno ai quattro giganti gassosi orbitano degli anelli planetari di dimensione e complessità variabili. Gli anelli sono composti principalmente da polveri ghiacciate o silicati e possono ospitare minuscoli satelliti pastore la cui gravità ne delinea la forma e ne conserva la struttura. Sebbene l'origine degli anelli planetari non sia nota con certezza, si crede che derivino da un satellite naturale che ha sofferto un grosso impatto oppure siano il risultato piuttosto recente della disgregazione di un satellite naturale, distrutto dalla gravità del pianeta dopo aver oltrepassato il limite di Roche. Nessuna caratteristica secondaria è stata osservata attorno agli esopianeti fino scoperti, anche se si ipotizza che alcuni di questi, in particolare i giganti più massicci, potrebbero ospitare uno stuolo di esosatelliti simili a quelli che orbitano attorno a Giove. Tuttavia si crede che la sub-nana bruna Cha 110913-773444, classificata come un pianeta interstellare, sia circondata da un disco da cui in futuro potrebbero avere origine dei piccoli pianeti o satelliti.